Mar. 31, 2025
Ethyl acetate is colorless transparent liquid, low toxicity, sweet smell, irritating odor at higher concentration, volatile, sensitive to air, can absorb moisture, making it slowly hydrolyzed and acidic reaction. Can be miscible with chloroform, ethanol, acetone and ether, soluble in water (10%ml/ml). Can dissolve some metal salts (such as lithium chloride, cobalt chloride, zinc chloride, iron chloride, etc.) reaction. Relative density 0.902. Melting point -83℃. Boiling point 77℃. Refractive index 1.. Flash point 7.2℃(open cup). Flammable. Vapor can form explosive mixture with air. LD50 (rat, oral) 11.3ml/kg.
SL Tec are exported all over the world and different industries with quality first. Our belief is to provide our customers with more and better high value-added products. Let's create a better future together.
Processed in these plants using top quality ingredients, our offered products are highly miscible with diethyl ether, acetone, ethanol & benzene and are widely used in nail polish remover & glues.
There are 4 main prevailing processes for ethyl acetate production, i.e. Direct Esterification Process, Acetaldehyde Condensation Process, Ethanol Dehydration Process and Acetic Acid-Ethylene Addition Process. Each process has its advantages and its applicable services. Our process is based on reactive-distillation esterification, which is mature, low costing and suitable for those with acetic acid feedstock.
Ethyl Acetate Plants are designed mixing acetic acid and ethyl alcohol in a balanced proportion through a preheater to a kettle reboiler for distillation purpose. In this plant, acetic acid and ethyl alcohol is mixed in a balanced proportion through a preheater to a kettle reboiler for distillation purpose. This plant is known for its robust construction and ability continuously running at even high speeds.
There are 4 main prevailing processes for ethyl acetate production, i.e. Direct Esterification Process, Acetaldehyde Condensation Process, Ethanol Dehydration Process and Acetic Acid-Ethylene Addition Process. Each process has its advantages and its applicable services. Our process is based on reactive-distillation esterification, which is mature, low costing and suitable for those with acetic acid feedstock.
These plants are used in various cosmetic, chemical and pharmaceuticals industries for processing and storage of various products.
Applications :
● Liquor industry
● Chemical industry
● Pharmaceutical industry
● Paint industry
Further, these plants and machines are designed and developed in different technical specifications, which fit the diverse requirements of the clients. We have gained immense appreciation among our clients for our manufactured and supplied assortment of Ethyl Acetate Plants.
150 tons/day ethyl acetate plant in Turkey
Hubei Sanli Fengxiang Technology Co., Ltd. is responsible for the EPC project of Turkey's 150 tons/day ethyl acetate refined EPC project, including design, procurement, commissioning, operation, training, etc. After experiencing the epidemic and other difficulties, we have successfully produced qualified products and completed the installation load acceptance work. Let us review the progress of the installation.
signing the contract
The contract was officially signed in .
Device Advantages
● This device adopts three-tower thermal coupling energy-saving technology, which has the following advantages:
● Energy saving and environmental protection, far below the industry's 1.6t/t steam consumption index;
● Large load operation flexibility of the device;
● High degree of self-control, simple operation;
● Use new catalysts;
● The process route is simple and the investment cost is low.
If you are looking for more details, kindly visit Methyl Methacrylate Plant.
Ethyl acetate (systematically ethyl ethanoate, commonly abbreviated EtOAc, ETAC or EA) is the organic compound with the formula CH3CO2CH2CH3, simplified to C4H8O2. This flammable, colorless liquid has a characteristic sweet smell (similar to pear drops) and is used in glues, nail polish removers, and the decaffeination process of tea and coffee. Ethyl acetate is the ester of ethanol and acetic acid; it is manufactured on a large scale for use as a solvent.[5]
Ethyl acetate was first synthesized by the Count de Lauraguais in by distilling a mixture of ethanol and acetic acid.[6]
In , an estimated 1.3 million tonnes were produced worldwide.[5][7] The combined annual production in of Japan, North America, and Europe was about 400,000 tonnes. The global ethyl acetate market was valued at $3.3 billion in .[8]
Ethyl acetate is synthesized in industry mainly via the classic Fischer esterification reaction of ethanol and acetic acid. This mixture converts to the ester in about 65% yield at room temperature:
The reaction can be accelerated by acid catalysis and the equilibrium can be shifted to the right by removal of water.
It is also prepared in industry using the Tishchenko reaction, by combining two equivalents of acetaldehyde in the presence of an alkoxide catalyst:
Silicotungstic acid is used to manufacture ethyl acetate by the alkylation of acetic acid by ethylene:[9]
Ethyl acetate is used primarily as a solvent and diluent, being favored because of its low cost, low toxicity, and agreeable odor.[5] For example, it is commonly used to clean circuit boards and in some nail varnish removers (acetone is also used). Coffee beans and tea leaves are decaffeinated with this solvent.[10] It is also used in paints as an activator or hardener. Ethyl acetate is present in confectionery, perfumes, and fruits. In perfumes it evaporates quickly, leaving the scent of the perfume on the skin.
Ethyl acetate is an asphyxiant for use in insect collecting and study.[11] In a killing jar charged with ethyl acetate, the vapors will kill the collected insect quickly without destroying it. Because it is not hygroscopic, ethyl acetate also keeps the insect soft enough to allow proper mounting suitable for a collection. However, ethyl acetate is regarded as potentially doing damage to insect DNA, making specimens processed this way less than ideal for subsequent DNA sequencing.[12]
In the laboratory, mixtures containing ethyl acetate are commonly used in column chromatography and extractions.[13] Ethyl acetate is rarely selected as a reaction solvent because it is prone to hydrolysis, transesterification, and condensations.
Ethyl acetate is the most common ester in wine, being the product of the most common volatile organic acid – acetic acid, and the ethyl alcohol generated during the fermentation. The aroma of ethyl acetate is most vivid in younger wines and contributes towards the general perception of "fruitiness" in the wine. Sensitivity varies, with most people having a perception threshold around 120 mg/L. Excessive amounts of ethyl acetate are considered a wine fault.
Ethyl acetate is only weakly Lewis basic, like a typical carboxylic acid ester.
Ethyl acetate hydrolyses to give acetic acid and ethanol. Bases accelerate the hydrolysis, which is subject to the Fischer equilibrium mentioned above. In the laboratory, and usually for illustrative purposes only, ethyl esters are typically hydrolyzed in a two-step process starting with a stoichiometric amount of a strong base, such as sodium hydroxide. This reaction gives ethanol and sodium acetate, which is unreactive toward ethanol:
In the Claisen condensation, anhydrous ethyl acetate and strong bases react to give ethyl acetoacetate:[14]
Under normal conditions, ethyl acetate exists as a colorless, low-viscosity, and flammable liquid. Its melting point is −83 °C, with a melting enthalpy of 10.48 kJ/mol. At atmospheric pressure, the compound boils at 77 °C. The vaporization enthalpy at the boiling point is 31.94 kJ/mol. The vapor pressure function follows the Antoine equation
where
This function is valid within the temperature range of 289 to 349 K (16–76 °C).
The enthalpy of vaporization in kJ/mol is calculated according to the empirical equation by Majer and Svoboda[15]
where
The following table summarizes the most important thermodynamic properties of ethyl acetate under various conditions.
Compilation of key thermodynamic properties Property Type Value Remarks References Standard enthalpy of formation Δ f H liquid 0 {\displaystyle \Delta _{f}H_{\text{liquid}}^{0}}The LD50 for rats is mg/kg,[24] indicating low acute toxicity. Given that the chemical is naturally present in many organisms, there is little risk of toxicity.
Overexposure to ethyl acetate may cause irritation of the eyes, nose, and throat. Severe overexposure may cause weakness, drowsiness, and unconsciousness.[25] Humans exposed to a concentration of 400 ppm in 1.4 mg/L ethyl acetate for a short time were affected by nose and throat irritation.[26] Ethyl acetate is an irritant of the conjunctiva and mucous membrane of the respiratory tract. Animal experiments have shown that, at very high concentrations, the ester has central nervous system depressant and lethal effects; at concentrations of 20,000 to 43,000 ppm (2.0–4.3%), there may be pulmonary edema with hemorrhages, symptoms of central nervous system depression, secondary anemia and liver damage. In humans, concentrations of 400 ppm cause irritation of the nose and pharynx; cases have also been known of irritation of the conjunctiva with temporary opacity of the cornea. In rare cases exposure may cause sensitization of the mucous membrane and eruptions of the skin. The irritant effect of ethyl acetate is weaker than that of propyl acetate or butyl acetate.[27]
If you are interested in sending in a Guest Blogger Submission,welcome to write for us!
All Comments ( 0 )