Oct. 07, 2024
Electronic Components & Supplies
Even better would be if someone could explain what I would be looking for as far as data sheet specs go so I can learn how to pick one myself in the future. I have a basic knowledge of electronics but I get lost when I read about forward voltage vs reverse voltage, leaked current vs rectified, recovery time, etc and how it would all relate to this and future projects I am working on.
First you think through what the various properties are. Sometimes it helps to write it out on paper (or whatever), especially when it's a new field for you or a complex problem, so let's do that:Then you think about what's important in your application. For power-ORing diodes, recovery time is usually totally insignificant. Reverse current is also usually not very important. Reverse voltage needs to be above the value of the highest power supply in the system (i.e., if you're ORing 12V and 5V, all the diodes better be rated 12V or higher!). You also need a bit of headroom; it's never good to run parts at 100% of their rating if it can be avoided. Your rectified current, as you've identified, should be 500mA minimum. (I might choose the next size up, 1A, Just In Case. Or I might not, if I'm size-constrained on the layout or it's a non-critical part.) And then you can just pick the part with the lowest forward voltage drop that meets your other criteria of price, package size, availability, &c.(Also consider what else you could use this part for; often it is better to buy two identical parts, even if they're individually a bit more expensive or somewhat overspecified, than managing two separate part inventories for different parts in different circuits. BOM line item reduction makes everyone happy!)I adore manufacturer catalogs that list all their parts and relevant specs, because it makes this game a lot easier. NXP has a great MOSFET and diode catalog, available here , and guess what? I pick NXP diodes a lot more often than other manufacturers'. (HINT FOR MANUFACTURERS: make my life easier and I'll buy your parts!) If you load that up and scroll to around page 36 (PDF page 20 because they paginated it bizarrely), you'll see a whole bunch of candidate parts. Many would probably work for your application. PMEGEJ looks like a decent starting point, but you may prefer to optimize for other things (smaller, higher power, better available, etc.) I usually pick a couple of favorites that look good, then search DigiKey, Mouser, or Octopart and see how available and expensive each is, and then just pick one.Sometimes if I need something a little more exotic, availability will be more limited. (That is not the case with bog-standard diodes.) In that case I usually start with the distributors' sites and see what they've got first, rather than what's in the catalog and might or might not be actually purchasable.
If you want to learn more, please visit our website.
In my earlier years working on unique semiconductor devices, the last thing we wanted was to form a Schottky barrier at a metal-semiconductor interface. The resulting rectifying behavior is undesirable in many applications, but you can take advantage of this rectification between a metal and semiconductor. This type of diode is called a Schottky diode, and it finds its home in a number of important applications requiring rectification with low voltage drop.
Compared to p-n diodes, a Schottky diode provides lower voltage drop across the diode at low reverse bias. Some applications of Schottky diodes include rectifiers in switching regulators, discharge protection in power electronics, and rectifying circuits requiring high switching rate. If youre planning on simulating the behavior of circuits with Schottky diodes, or any circuit with a rectifying element, pay attention to the highly nonlinear behavior of these components. Heres what you need to keep in mind when designing these circuits.
A Schottky diode is sometimes called a Schottky barrier diode, or simply a barrier diode. These diodes are built by placing a metal film in contact with a semiconductor layer (normally n-type). These diodes are forward biased when the metal side is held at higher potential than the semiconductor side, and vice versa for reverse bias. Typical metals used in a Schottky diode are platinum, chromium, molybdenum, or tungsten. Certain metal silicides, such as palladium silicide and platinum silicide, are also used in Schottky diodes.
Obviously, there must be a metal on the other side of the semiconductor layer to provide a path for charge carriers to move through the device. In a Schottky diode, two dissimilar metals are used for electrical contacts. The metal at the anode forms the rectifying junction in a Schottky diode, known as a Schottky barrier. At the cathode side, there is no rectifying junction, and the metal-semiconductor interface acts like a small resistor (called an Ohmic contact).
Schottky diode symbol and structure
Compared to a p-n diode, there is only a single Ohmic contact in a Schottky diode, while a p-n diode has two Ohmic contacts (one on each side of the device). This is one reason a Schottky diode has lower forward voltage drop than a p-n diode; voltage is only dropped across a single Ohmic contact, while the other contact in a Schottky diode provides rectification. The forward voltage drop across a Schottkey diode is ~300 mV, while it is ~600 mV in a silicon diode.
Hornby Electronic are exported all over the world and different industries with quality first. Our belief is to provide our customers with more and better high value-added products. Let's create a better future together.
Aside from this characteristic, Schottky diodes exhibit the same behavior as standard p-n diodes when run with DC bias. If youre looking to simulate these components prior to making your actual circuit, its important to note, especially with their unique recovery times and doping considerations, that SPICE models can make this easy, accurate, and advantageous for your overall design process. But, when the DC bias is switched, or when run with an AC signal, Schottky diodes have very different behavior than standard p-n diodes or Shockley diodes.
One important aspect of Schottky diode behavior is its reverse recovery time when switched between the rectifying and non-rectifying states. Thanks to the metal contact in the device, a Schottkey diode has much faster reverse recovery time than a typical p-n diode. Any diode will have some capacitances at the metal contacts. In a Schottky diode, the parasitic capacitance at the metal-semiconductor interface is lesser than that at the junction in a silicon diode, thus its reverse recovery time is much faster.
The reverse recovery time in a Schottkey diode can reach as low as ~100 ps. Larger Schottkey diodes that are used in power electronics (e.g., in switched-mode power supplies) have longer reverse recovery times, usually reaching ~10 ns. Compare this with a typical fast p-n diode, where the reverse recovery time is at least ~100 ns.
This is why a Schottkey diode finds its home in switching regulators. The fast recovery time of a Schottkey diode allows it to be used with PWM frequencies reaching MHz levels. Combine this with a faster edge rate for the PWM signal, and you have a system that can run successfully at higher frequencies that fully switches off the MOSFET driver in the regulator. If a p-n diode were used in such a system, the maximum PWM frequency and edge rate would be limited by the slow reverse recovery time of the p-n diode.
If the transistor in your regulator is saturating, a Schottky diode is also useful for voltage clamping, which limits the voltage applied to the base by channeling some current to the emitter/collector (or source/drain in a MOSFET). Another possible application is in a high frequency clipping circuit, where a pair of Schottky diodes in a back-to-back configuration will limit the output voltage at the reverse saturation current. This nicely limits the amplitude of a switching signal to some maximum, preventing potential damage to a downstream device.
Voltage clamping and RF detection with a Schottky diode
Smaller Schottky diodes are also important in RF detectors and mixers, which can operate up to 50 GHz. These smaller diodes are limited in the maximum voltage they can handle, but their low parasitic capacitances provide the fast switching time needed for RF detection (see the above circuit). There are many other applications that can benefit from a Schottky diode, thanks to its low forward voltage drop and fast reverse recovery time.
No matter which type of Schottky diode youre building, you can accurately evaluate circuit behavior when you use the right PCB design and analysis software and a set of verified component models for your simulations. The design and simulation tools in PSpice Simulator for OrCAD and the full suite of analysis tools from Cadence are ideal for evaluating rectification, switching behavior, and other aspects of these components in a larger system. The manufacturing preparation tools also help ensure your components will be sourceable at scale.
If youre looking to learn more about how Cadence has the solution for you, talk to us and our team of experts.
For more Custom Schottky diode protection Exporterinformation, please contact us. We will provide professional answers.
Previous: Carbon vs Metal Film Resistors: Differences
Next: Best Metal Film Resistors: Construction, Manufacturing, ...
If you are interested in sending in a Guest Blogger Submission,welcome to write for us!
All Comments ( 0 )