The Ultimate Guide To Woven Wire Mesh Filters

Author: Geym

May. 06, 2024

The Ultimate Guide To Woven Wire Mesh Filters

Comparing Stainless Steel Alloys

Contact us to discuss your requirements of Cap Filter Mesh. Our experienced sales team can help you identify the options that best suit your needs.

While woven wire mesh filters can be constructed from several alloys, stainless steel is predominantly used. This is because stainless steel offers the most efficient life spans when subjected to harsh corrosive conditions and extreme temperatures.

Now, there are several stainless steel variants on the market, all with their own chemical makeup. That said, mesh filters ultimately fall within either 300 series or 400 series.

 


300 Series Stainless Steel

300 series stainless steel is used to classify 9 stainless steel variants: 304, 309, 310, 316, 317, 318, 321, 330, 347. The most widely used in the 300 series family is 304 and 316 stainless steel, with the other 300 series variants being utilized for particular applications.

304 stainless steel consists of 18% chromium and 8% nickel, whereas 316 stainless steel consists of 16% chromium, 10% nickel, and 2% molybdenum. Despite their different chemical compounds, 304 and 316 stainless steels are visually similar and carry the same ability to be welded.

Read "304 vs. 316 Stainless Steel Wire Mesh: Which Alloy Should I Use?" for a more in-depth breakdown of the two 300 series variants.

 

400 Series Stainless Steel

Regarding woven wire mesh filters, 400 series stainless steel is used to classify 430 stainless steel as it's the most predominantly used 400 series alloy when weaving mesh. That said, 430 stainless steel consist of 11% chromium and 1% manganese.

To that end, 400 series steels typically contain higher levels of carbon than 300 series steels, making them more durable. Additionally, 400 series is widely known for its magnetic properties.

 

Post-weaving services

As stated above, woven wire mesh filters can be applied to a wide range of filtration applications. That said, to ensure your mesh filter best accommodates your needs, several value-added services are incorporated during the fabrication process after the mesh has been woven.

These services are called value-added services because each method and technique delivers its own unique value to the fabrication process. To that end, the following are all value-added services available to you:

Forming

After undergoing the centuries-old weaving process, woven wire filter cloth takes the form of a sheet of mesh that is often rolled for storage or delivery. That said, the pliable qualities of the mesh allow it to be cut and formed into various shapes or deep-drawn parts.

Welding

To properly bind the ends of mesh when forming a cylindrical filter or multiple layers, one of several welding techniques is usually employed. Depending on the needs of your filter, a spot, tungsten inert gas (TIG), plasma, or solder will be applied.

Simple, single-layer pieces spot welding is typically used to protect the integrity of the mesh. Spot welding is also employed when fabricating multi-layer extruder screens and gasket sock screens.

However, if the filter is more complex or needs to be leak-resistant, a TIG or plasma weld will be applied as they offer a more durable weld.

Read "4 Types of Welding Techniques Used on Woven Wire Mesh (Spot, TIG, Plasma, and Solder)" to learn more about welding wire mesh filters.

Heat Treatment

To ensure woven wire filter cloth can be molded into specific shapes and hold that shape, the mesh must undergo one of two heat treatment methods: annealing or sintering. 

Annealing is the process of heating the mesh to a point in which the individual wires become softer and more malleable. As it minimizes the internal stress and hardness of the wires, it is used when you want your formed mesh to retain the desired shape.

Sintering is the heat treatment technique that heats the filter cloth until it's just below its melting point, subjecting the mesh to tremendous pressure at the same time. This technique is typically used when mesh opening accuracy is critical as it creates a more permanent bond at each wire intersection.

Read "Annealing vs Sintering Wire Mesh: Which Is Best for Me?" to learn more about heat treating your wire mesh filters.

For more Fiberglass Filtration Filterinformation, please contact us. We will provide professional answers.

Featured content:
Woven Wire Mesh: Fundamentals and How Is It Made?

Pleating


Ultimate Chain Link Fence Wire FAQs For 2022
How do I install a stainless steel window screen mesh?

Pleating is the process in which the filtration surface area of the mesh filter is increased without physically increasing the amount of filter cloth used. This is particularly useful when the space in which the filter can be housed is limited, but increased filtration capabilities are needed.

Ultrasonic Cleaning

As filtration is a process that calls for equipment that is free of foreign objects, your mesh filters must be clean. This includes when it arrives at your facility.

To ensure your filters are free of dust, lint, or other foreign debris, you can request that your mesh undergo an ultrasonic cleaning. This involves placing the mesh in a solution bath that is agitated using high-frequency vibrations, freeing and removing unwanted particles from the mesh.

Injection Molding

Some applications call for mesh filters to be placed into plastic injection molding to ensure the mesh properly fits the filter system without sacrificing durability or functionality. To maximize the quality of the filter, injection molding is carried out within the facility of the mesh supplier.

Calendaring

Calendaring is a technique used to reduce the high points of the filter cloth by applying heat and pressure to flatten the knuckles that form at each wire intersection. This strengthens the wire intersections, creating a more stable mesh filter that features a smooth, flat surface.

Cleaning and Maintaining Your Mesh Filter

Implementing effective filter media is the easiest way to yield success no matter what your filter system looks like. When working with mesh filters, the easiest way to preserve the effectiveness of the mesh is to clean your filters regularly.

This helps prevent blinding, plugging, and other hindrances that can impact the efficiency of your filter. That said, a mesh filter can be cleaned by either backflushing, pressure washing, or chemical cleaning your mesh.

Backflushing

Backflushing is the cleaning technique in which the flow of the filter system is reversed, dislodging any contaminant particles that became stuck during normal filtration operations. This cleaning method stands out as it provides an easy means to reaching stubborn, hard-to-reach particles.

Pressure Washing

Pressure washing involves using a jet of pressurized water to lift contaminant particles and other unwanted from the surface of the mesh. This method works to minimize the need for manual scrubbing; however, it lacks the effectiveness seen when backflushing regarding purging the mesh of plugged particles.

Chemical Cleaning

Chemical cleaning is the cleaning technique the utilizes various chemicals to remove residual particles and debris from the surface of the mesh filter. These chemicals include detergents, solvents, and alcohol.

Chemical cleaning is possibly the most manual cleaning method of the three listed despite being the least effective against plugged contaminant particles.

Mesh Filter component

Skinned Mesh Renderer component

Text Mesh component (legacy)

Mesh Filter component

Switch to Scripting

A Mesh Filter component holds a reference to a mesh. It works with a Mesh RendererA mesh component that takes the geometry from the Mesh Filter and renders it at the position defined by the object’s Transform component. More info
See in Glossary component on the same GameObjectThe fundamental object in Unity scenes, which can represent characters, props, scenery, cameras, waypoints, and more. A GameObject’s functionality is defined by the Components attached to it. More info
See in Glossary; the Mesh Renderer renders the mesh that the Mesh Filter references.

To render a deformable mesh, use a Skinned Mesh Renderer instead. A Skinned Mesh Renderer component does not need a Mesh Filter component.

Mesh Filter Inspector reference

Property: Function: Mesh

See in Glossary

The main graphics primitive of Unity. Meshes make up a large part of your 3D worlds. Unity supports triangulated or Quadrangulated polygon meshes. Nurbs, Nurms, Subdiv surfaces must be converted to polygons. More info

A reference to a mesh asset.

To change the mesh asset that the Mesh Filter component references, use the picker (circle icon) next to the mesh’s name.

Note: The settings for other components on this GameObject don’t change when you change the mesh that the Mesh Filter references. For example, a Mesh Renderer doesn’t update its settings, which might cause Unity to render the mesh with unexpected properties. If this happens, adjust the settings of the other components as needed.

Corresponds to the MeshFilter.mesh property.

MeshFilter

Skinned Mesh Renderer component

Text Mesh component (legacy)

For more information, please visit Are Cigarette Filters Made of Fiberglass.

8

0

Comments

Please Join Us to post.

0/2000

All Comments ( 0 )

Guest Posts

If you are interested in sending in a Guest Blogger Submission,welcome to write for us!

Your Name: (required)

Your Email: (required)

Subject:

Your Message: (required)